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MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES FOR

CANONICAL ENSEMBLES.

Max Fathi1

Abstract. In this paper, we prove modified logarithmic Sobolev inequalities for
canonical ensembles with superquadratic single-site potential. These inequalities
were introduced by Bobkov and Ledoux, and are closely related to concentration
of measure and transport-entropy inequalities. Our method is an adaptation of the
iterated two-scale approach that was developed by Menz and Otto to prove the
usual logarithmic Sobolev inequality in this context. As a consequence, we obtain
convergence in Wasserstein distance Wp for Kawasaki dynamics on the Ginzburg-
Landau model.

Résumé. Dans cet article, nous obtenons des inégalités de Sobolev logarithmiques
pour les mesures canoniques avec potentiel superquadratique. Ces inégalités ont été
introduites par Bobkov et Ledoux, et sont liées à un phénomène de concentrationd
e la mesure, ainsi qu’à des inégalités transport-entropie. Notre approche est une
adaptation de la méthode à deux échelles itérée qui a été développée par Menz
et Otto pour démontrer l’inégalité de Sobolev logarithmique usuelle pour de telles
mesures. Comme conséquence, nous obtenons la convergence vers l’équilibre en
distance de Wasserstein Wp pour la dynamique de Kawasaki sur le modèle de
Ginzburg-Landau.
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Introduction

The logarithmic Sobolev inequality is an inequality allowing to embed the Sobolev space
H1(µ) in the Orlicz space L2 logL(µ), just like the usual Sobolev inequalities embed H1 in
Lp for some p > 2. It was introduced by Gross in [6], and has been shown to be very useful
in some problems of statistical physics, such as long-time convergence to equilibrium, and
hydrodynamic limits (see for example [8]).
One case of measures where such an inequality has been useful is for canonical ensembles,
which are probability measures µ(dx) = exp(−

∑
ψ(xi)) on the hyperplane {

∑
xi = Nm}

of RN . In the recent contribution [12], Menz and Otto proved that, if the function ψ is a
bounded perturbation of a uniformly convex function, then the canonical ensemble satisfies a
logarithmic Sobolev inequality, with a constant independent of the mean m and the dimension
N .
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The result of [12] covers potentials which behave like |x|p for some p ≥ 2. A natural question
is whether we can improve the LSI when p is strictly larger than 2. For this purpose, we
investigate whether a variant of the LSI called the modified logarithmic Sobolev inequality,
which was introduced by Bobkov and Ledoux in [2], is satisfied by canonical ensembles. Our
method is a generalization of the iterated two-scale approach that was used in [12] to obtain
the usual LSI.

Notations
• p will always denote a real number satisfying p ≥ 2, and q will always be the dual

exponent of p, that is the only real number satisfying 1
p + 1

q = 1.

• We denote by || · ||p the usual `p norm on RN , and 〈·, ·〉 the scalar product associated
to the `2 norm.

• When X is an affine subspace of RN and f : X → R is a smooth function, we define
the gradient of f at point x by (∇f)i(x) := ∂f

∂xi
(x), where the function f has been

extended to be constant in the direction normal (for the L2 structure) to X in RN .
This definition coincides with the usual one.
• Z is a constant enforcing unit mass for a probability measure.
• C is a positive constant, which may change from line to line, or even within a line.
• Entµ(f) :=

∫
f log fdµ−

(∫
fdµ

)
log
∫
fdµ is the entropy of the (nonnegative) func-

tion f with respect to the probability measure µ.
• P t is the adjoint of the linear operator P .
• LN is the N -dimensional Lebesgue measure.

1. Background and Main Results

In this paper, we are interested in the following family of inequalities, which generalizes the
logarithmic Sobolev inequality.

Definition 1.1. A probability measure µ satisfies a p-modified logarithmic Sobolev inequality
with parameter ρ if, for all positive compactly supported C1 function f, we have

Entµ(f) ≤ 1

ρ

∫ ||∇f ||qq
fq−1

dµ, (1.1)

where q is the dual exponent of p, that is

1

p
+

1

q
= 1.

Equivalently, µ satisfies this inequality if for any such function f , we have

Entµ(fq) ≤ qq

ρ

∫
||∇f ||qqdµ. (1.2)

In the case p = 2, this is the usual logarithmic Sobolev inequality. Many results on these
inequalities can be found in [3], and we recall some of them in the sequel. It is well known
that the usual LSI implies Gaussian concentration properties. In the same way, modified
logarithmic Sobolev inequalities are linked to the following form of concentration of measure
:

Definition 1.2. A probability measure µ on a metric space (X, d) has the p-exponential
concentration property with parameter c if, for any 1-Lipschitz function f : X → R and every
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r ≥ 0, we have

µ

(
f ≥

∫
fdµ+ r

)
≤ exp

(
− ctp

p(p− 1)p−1

)
.

Theorem 1.3. If µ satisfies p−LSI(ρ), then µ satisfies p-exponential concentration for the
`p distance

We refer to [BZ, Theorem 1.3] for a proof of this result.
We consider a (periodic) lattice spin system of N continuous variables governed by a Ginzburg-
Landau type potential ψ : R→ R. The grand canonical measure on RN has density

dµN
dLN

(x) =
1

Z
exp

(
−

N∑
i=1

ψ(xi)

)
. (1.3)

We shall assume that the potential ψ is of class C1 and is of the form

ψ(x) = ψc(x) + δψ(x); ψ′′c (x) ≥ c(1 + |x|p−2); ||δψ||∞ + ||δψ′||∞ < +∞. (1.4)

Under these assumptions, ψc is a uniformly p-convex and uniformly convex function. A
typical example would be the quartic double-well potential ψ(x) = (x2−1)2. For a definition
of p-convexity see Theorem A.1

Remark. Our results are still valid if we only ask ψc to satisfy ψ′′c (x) ≥ c(1 + |x − x0|p−2)
for some x0. The proof is exactly the same, but the extra assumption makes the calculations
easier to read.

To simplify notations, we define the Hamiltonian

H(x) :=

N∑
i=1

ψ(xi) + logZ, (1.5)

so that µ(dx) = exp(−H(x))dx.
We will add to the situation a constraint of fixed mean spin. The phase state space is

XN,m :=

{
x ∈ RN ,

1

N

N∑
i=1

xi = m

}
,

where m is an arbitrary real number. This space is a hyperplane of RN with a fixed mean
constraint. We endow this space with the `2 inner product

〈x, x̃〉X =

N∑
i=1

xix̃i. (1.6)

For a given m ∈ R, we consider the restriction µN,m of the grand canonical measure to XN,m,
that is

dµN,m
dLN−1

(x) =
1

Z
1(1/N)

∑
xi=m exp

(
−

N∑
i=1

ψ(xi)

)
. (1.7)

This measure is called the canonical ensemble. It gives the distribution of the random vari-
ables xi conditioned on the event that their mean value is given by m.
It was shown in [12] that when the single site potential satisfies assumption (1.4) with p = 2,
then the canonical ensemble satisfies the classical logarithmic Sobolev inequality for some
constant ρ > 0 that is independent of both m and N . Our aim in this paper is to generalize
this result for the modified LSI, and we obtain the following :
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Theorem 1.4. Under the assumption (1.4), the canonical ensemble µN,m satisfies p-LSI(ρ)
for some constant ρ > 0 that is independent of both N and m.

The proof in [12] uses a method called the iterated two-scale approach, which generalizes a
method that was developed in [8]. The idea is to use a decomposition of the system into a
macroscopic component and a fluctuations component, obtained by coarse-graining. There
are then two main ideas: then first is to prove that if the laws of both the macrscopic and
fluctuations part satisfy the desired functional inequality, then the law of the full system also
satisfies the inequality. The second idea is tho show that, if we iterate this decomposition
often enough for the successive macroscopic component, then we obtain additional convexity
properties, which allow us to prove that the macroscopic component satisfies the inequality
we are looking for.
Our proof here follows the iterated two-scale approach, but uses several new ingredients :

• To deduce the modified LSI for the full measure from the inequality for the macro-
scopic measure, we use the L1 Poincaré inequality to bound a crucial covariance
term;

• In addition to uniform convexity, we must prove uniform p-convexity for the macro-
scopic Hamiltonian, as soon as we have coarse-grained the system often enough;

• We use the Prekopa-Leindler inequality to show that, if the single-site potential sat-
isfies assumption (1.4), then the coarse-grained potential also does.

It was shown in [13] (and then in [1] and [5] with alternative proofs) that the classical logarith-
mic Sobolev inequality implies that the square root of the entropy controls the Wasserstein
distance of order two (up to a multiplicative constant). Such an inequality is known as Ta-
lagrand’s inequality. Similarly, we can define a class of inequalities which generalizes the
Talagrand inequality to Wasserstein distances of order p, which is linked to the modified
logarithmic Sobolev inequality we just defined.

Definition 1.5. A probability measure µ satisfies a Talgrand inequality with parameter p and
constant ρ if, for any probability measure ν, we have

W p
p (µ, ν) ≤ p

ρ
Entµ(ν).

We will denote this inequality by Tp(ρ).

Remark 1.1. Some people define Tp(ρ) as Wp(µ, ν) ≤
√

2
ρ Entµ(ν). These two definitions

are not equivalent.

It was shown by Marton in [11] that transport-entropy inequalities such as Talagrand inequali-
ties imply concentration properties. These inequalities are also linked to modified logarithmic
Sobolev inequalities through the following result, which was proven in [7] :

Proposition 1.6. If µ satisfies p-LSI(ρ), then it satisfies Tp(ρ̃), with constant ρ̃ = ((p −
1)ρ)p−1 and the `p distance.

Combining this Proposition and Theorem 1.4, we obtain

Theorem 1.7. Under the assumption (1.4), the canonical ensemble µN,m satisfies Tp(ρ̃) for
some constant ρ̃ > 0 that is independent of N and m.

In section 3, an application of these modified LSI is presented, to obtain rates of convergence
in the Wasserstein distance Wp for for the Kawasaki dynamic on the Ginzburg-Landau model.
These inequalities can also be used to obtain quantitative rates on the speed of convergence
to the hydrodynamic limit in Wp of Kawasaki dynamics, in conjunction with the results in [4]
on convergence in relative entropy.
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2. The iterated two-scale approach for modified logarithmic
Sobolev inequalities

In this section, we shall prove Theorem 1.4. The proof is based on a coarse-graining argument.
The coarse-graining operator we shall use is defined as follows : Assume N = 2K for some
large K ∈ N. We define P : XN,m → XN/2,m by

P (x1, x2, ..., xN ) :=

(
x1 + x2

2
,
x3 + x4

2
, ...,

xN−1 + xN
2

)
. (2.1)

Using this operator, we can decompose µN,m as

µN,m(dx) = µ(dx|y)µ̄(dy)

where µ̄ is the push forward of µ under P and µ(dx|y) is the conditional measure of x given
Px = y.
The key element of the iterated two-scale approach of [12] is that, when the coarse-grained
measure µ̄ satisfies a logarithmic Sobolev inequality, the full measure µ also does. We shall
prove the same result for modified logarithmic Sobolev inequalities :

Proposition 2.1. If µ̄ satisfies p-LSI(ρ) with ρ independent of N and m, then µN,m satisfies
p-LSI(ρ̃) with ρ̃ also independent of N and m.

To prove Theorem 1.4, we shall iteratively apply Proposition 2.1. To be able to do so, we
need to show that the coarse-grained measure has the same form as the original measure, i.e.
that it has the structure exp(−

∑
ψ̃(yi)) with ψ̃ a bounded perurbation of a p-convex and

uniformly convex function. To do this, lets look at the structure of µ̄. We have

µ̄(dy) =
1

Z
exp

−2

N/2∑
i=1

Rψ(yi)

 dy

where

Rψ(y) := −1

2
log

(∫
R

exp(−ψ(x+ y)− ψ(−x+ y))dy

)
(2.2)

is the renormalized single-site potential. We denote by RMψ the M-times renormalized single-
site potential. We then have the following result :

Lemma 2.2. If ψ = ψc + δψ is a bounded perturbation of a p-convex, uniformly convex
potential, then Rψ also is.

The last element of the proof is that, after a large but finite number of coarse-grainings, the
measure we obtain will be uniformly p-convex, and therefore satisfy p-LSI(ρ) for some ρ > 0.
This convexification phenomenon is well-known in statistical physics, as a consequence of the
equivalence of ensembles principle. We state is as the following lemma :

Lemma 2.3. Let ψ be a a bounded perturbation of a p-convex, uniformly convex potential.
Then there is an integer M0 such that for all M ≥ M0 the M-times renormalized single-site
potential RMψ is uniformly p-convex with constant ρ independent of the system size N , M
and of the mean m.

The proof of Theorem 1.4 is a direct consequence of these three results : we just have to
iterate Proposition 2.1 a large, but finite, number of times. Lemma 2.2 guarantees that this
iteration is legitimate, while Lemma 2.3 tells us that after a finite number of coarse-grainings,
the macroscopic measure we obtain is uniformly p-convex, and therefore satisfies p-LSI(ρ) for
some ρ independent of N and m. Since Proposition 2.1 allows us to deduce the inequality
for the microscopic measure as long as the coarse-grained measure also satisfies it, we can
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conclude that the original measure µN,m satisfies p-LSI(ρ) for some constant ρ > 0 that is
independent of both N and m. So all that remains is to prove these three results.

Proof of Proposition 2.1. First we use the decomposition

Entµ(f) = Entµ̄(f̄) +

∫
Entµ(·|y)(f)µ̄(dy), (2.3)

which can easily be verified through conditioning. We will then bound the two terms on the
right-hand side of (2.3) by using modified LSI for the measures µ(dx|y) and µ̄.

Lemma 2.4. There exists λ > 0 such that µ(dx|y) satisfies p-LSI(λ) for all y ∈ Y .

Proof of Lemma 2.4. Since µ(dx|y) =
⊗
µ2,yi(dx2i−1, dx2i), by the tensorization property

(see Proposition A.3), we just have to show that µ2,m satisfies p-LSI(λ) for some λ > 0 which
does not depend on the real number m.
We have

µ2,m(dx1, dx2) =
1

Z
1x1+x2=2m exp(−ψ(x1)− ψ(x2))dx

=
1

Z
1x1+x2=2m exp(−ψc(x1)− ψc(x2)− δψ(x1)− δψ(x2))dx

It is immediate that (x1, x2) → ψc(x1) + ψc(x2) is uniformly p-convex, so an application
of Theorem A.1 yields that the measure µ̃(dx) = Z−1

1x1+x2=2m exp(−ψc(x1) − ψc(x2))dx

satisfies p-LSI(λ̃) for some λ̃ > 0 which doesn’t depend on m. Since δψ is bounded, µ2,m is a
bounded perturbation of µ̃, and we immediately deduce from Proposition A.4 that it satisfies
p-LSI(λ) for some λ > 0 which does not depend on m. This concludes the proof of Lemma
2.4 �

We can now continue the proof of Proposition 2.1. As a consequence of Lemma 2.4, we have

∫
Entµ(·|y)(f)µ̄(dy) ≤

∫
Y

1

λ

∫
{Px=y}

|(idX − 2P tP )∇f |qq
fq−1

µ(dx|y)µ̄(dy)

=
1

λ

∫
X

|(idX − 2P tP )∇f |qq
fq−1

µ(dx). (2.4)

By assumption, µ̄ satisfies p-LSI(ρ), so that

Entµ̄(f̄) ≤ 1

ρ

∫
Y

|∇Y f̄ |qq
f̄q−1

µ̄(dy) (2.5)

To deduce from this inequality a bound on the macroscopic entropy by a function of the
microscopic gradient, we need to relate ∇Y f̄ and ∇f . This is the point of the following
lemma :

Lemma 2.5.

∇Y f̄(y) = 2P

∫
∇f(x)µ(dx|y) + 2P covµ(dx|y)(f,∇H).

This lemma was already used for the same reasons in [8] and [12]. For now, we defer its
proof. Using this result, the convexity of (x, b) → ||x||qq/bq−1 and the inequality |a + b|q ≤



TITLE WILL BE SET BY THE PUBLISHER 7

C(q)(|a|q + |b|q), we get

Entµ̄(f̄) ≤ 1

ρ

∫ |∇f̄ |qq
f̄q−1

µ̄(dy)

=
1

ρ

∫ ∣∣2P ∫ ∇f(x)µ(dx|y) + 2P covµ(dx|y)(f,∇H)
∣∣q
q(∫

f(x)µ(dx|y)
)q−1 µ̄(dy)

≤ C

ρ

∫
X

|2P∇f(x)|qq
fq−1

µ(dx) +
C

ρ

∫ |2P covµ(dx|y)(f,∇H)|qq
f̄

µ̄(dy) (2.6)

We have

|2P covµ(dx|y)(f,∇H)|qq =

N/2∑
i=1

∫
| covµ2,yi

(f, (2P∇H)i)|q
⊗
j 6=i

µ2,yj (dx2j−1, dx2j)

=

N/2∑
i=1

∫
| covµ2,yi

(f, ψ′(x2i−1) + ψ′(x2i))|q
⊗
j 6=i

µ2,yj (dx2j−1, dx2j)

≤ C(q)

N/2∑
i=1

∫
| covµ2,yi

(f, ψ′c(x2i−1) + ψ′c(x2i))|q
⊗
j 6=i

µ2,yj (dx2j−1, dx2j)

+ C(q)

N/2∑
i=1

∫
| covµ2,yi

(f, δψ′(x2i−1) + δψ′(x2i))|q
⊗
j 6=i

µ2,yj (dx2j−1, dx2j) (2.7)

To bound the first part term, we use the following inequality, due to [12] :

Lemma 2.6 (Asymmetric Brascamp-Lieb inequality). Let ν(dx) = 1
Z exp(−ψ(x))dx a prob-

ability measure on R, where ψ = ψc + δψ is a bounded perturbation of a strictly convex
potential. Then for any functions f and g, we have

| covν(f, g)| ≤ exp(−3 osc δψ) sup
x

∣∣∣∣ g′(x)

ψ′′c (x)

∣∣∣∣ ∫ |f ′|dν.
Using this lemma, we get∫

| covµ2,yi
(f, ψ′c(x2i−1) + ψ′c(x2i))|q

⊗
j 6=i

µ2,yj (dx2j−1, dx2j)

≤ C
∫ (∫ ∣∣∣∣ df

dx2i−1

∣∣∣∣+

∣∣∣∣ dfdx2i

∣∣∣∣µ2,yi(dx2i−1, dx2i)

)q⊗
j 6=i

µ2,yj (dx2j−1, dx2j)

≤

∫ (∫ f(x)µ2,yi(dx2i−1, dx2i)

)q/p⊗
j 6=i

µ2,yj (dx2j−1, dx2j)


×

∫ (∫ | df
dx2i−1

|q + | dfdx2i
|q

fq−1
µ2,yi(dx2i−1, dx2i)

)⊗
j 6=i

µ2,yj (dx2j−1, dx2j)


≤ Cf̄(y)q−1

(∫ | df
dx2i−1

|q + | dfdx2i
|q

fq−1
µ(dx|y)

)
, (2.8)
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where the last inequality uses the fact that q/p = q − 1 ≤ 1, and therefore a −→ aq−1 is
concave. Summing up, we obtain

N/2∑
i=1

∫
| covµ2,yi

(f, ψ′c(x2i−1) + ψ′c(x2i))|q
⊗
j 6=i

µ2,yj (dx2j−1, dx2j)

≤ Cf̄(y)q−1

∫ |∇f |qq
fq−1

µ(dx|y). (2.9)

For the second part of (2.7), we use the following L1 Poincaré inequality, which is Proposition
1.8 of [10] :

Theorem 2.7. Consider a measure µ = exp(−H)dx on Rd, and assume that H is a bounded
perturbation of a uniformly convex potential. Then there exists a constant α > 0 such that,
for any smooth function f , we have∫ ∣∣∣∣f(x)−

∫
f(y)µ(dy)

∣∣∣∣µ(dx) ≤ α
∫
|∇f(x)|µ(dx).

Since δψ′ is bounded, we have

| covµ2,yi
(f, δψ′(x2i−1) + δψ′(x2i))|q

≤ (2||δψ′||∞)q
(∫ ∣∣∣∣f(x)−

∫
fdµ2,yi

∣∣∣∣µ2,yi(dx2i−1, dx2i)

)q
≤ C

(∫
| df

dx2i−1
|+ | df

dx2i
|µ2,yi(dx2i−1, dx2i)

)q
≤ C

(∫
f(x)µ2,yi(dx2i−1, dx2i)

)q−1 ∫ | df
dx2i−1

|q + | dfdx2i
|q

f(x)q−1
µ2,yi(dx2i−1, dx2i), (2.10)

where we have used Theorem 2.7 and the convexity of the function (a, b)→ aq/bq−1.
With the previous two bounds, we get∫ |2P covµ(dx|y)(f,∇H)|qq

f̄
µ̄(dy) ≤ C

∫ |∇f |qq
fq−1

µ(dx). (2.11)

We then state the elementary inequalities

|2Px|qq =
∑
i

|x2i−1 + x2i|q ≤ C(q)
∑
j

|xj |q = C(q)|x|qq

and

|(id− 2P tP )x|qq =
∑
i

|x2i−1 − x2i

2
|q + |x2i − x2i−1

2
|q ≤ C(q)

2q
|x|qq.

Using these bounds, (2.4), (2.6) and (2.11), we get Proposition 2.1. �

Before we move on to the proofs of Lemmas 2.2 and 2.3, here is a short proof of Lemma 2.5,
which is taken from [8].

Proof of Lemma 2.5. Recall that

f̄(y) =

∫
{Px=y}

f(x)µ(dx|y)

=
1∫

{Px=0} exp(−H(2P ty + z))dz

∫
{Px=0}

f(2P ty + z) exp(−H(2P ty + z))dz,
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and therefore, for any ỹ ∈ Y , we have

∇Y f̄(y) · ỹ = 2

∫
∇f(x) · P tỹµ(dx|y)− 2

∫
f(x)∇H(x) · P tỹµ(dx|y)

− 2

(∫
f(x)µ(dx|y)

)(∫
−H(x) · P tỹµ(dx|y)

)
= 2

∫
P∇f(x) · ỹµ(dx|y)− 2

∫
f(x)P∇H(x) · ỹµ(dx|y)

+ 2

(∫
f(x)µ(dx|y)

)(∫
PH(x) · ỹµ(dx|y)

)
,

which is what we wanted to prove. �

We are now done with the proof of Proposition 2.1. The next step is to prove Lemma 2.2 :

Proof of Lemma 2.2. We define

ψ̄c(m) := −1

2
log

∫
exp(−ψc(m+ x)− ψc(m− x))dx

and

δ̄ψ(m) := −1

2
log

∫
R

exp(−ψ(m+ x)− ψ(m− x))dx

+
1

2
log

∫
exp(−ψc(m+ x)− ψc(m− x))dx. (2.12)

Our aim is to show that δ̄ψ is bounded in the C1 topology, and that ψ̄c is uniformly convex
and p-convex. Since Rψ = ψ̄c + δ̄ψ, this will show that µ̄ has the desired structure.
The fact that ψ̄c is uniformly convex has been done in [12], using the (symmetric) Brascamp-
Lieb inequality. Here we also need to prove that ψ̄c is uniformly p-convex. To do this, we
shall use the Prekopa-Leindler inequality, and the same method will also show that ψ̄c is
uniformly convex (which is not surprising, since the Prékopa-Leindler inequality is stronger
than the Brascamp-Lieb inequality, as was shown in [2]).

Theorem 2.8. Let t ∈ (0, 1) and f, g, h be non-negative measurable functions defined on R.
Suppose that these functions satisfy

h(tx+ (1− t)y) ≥ f(x)tg(y)1−t

for all x and y in R. Then

∫
h(x)dx ≥

(∫
f(x)dx

)t(∫
g(x)dx

)1−t

.

Let h(x,m) = exp (−ψc(x+m)− ψc(−x+m)). We have for any t ∈ (0, 1)
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h(tx+ (1− t)y, tm+ (1− t)m′)
= exp (−ψc(tx+ (1− t)y + tm+ (1− t)m′)− ψc(−tx− (1− t)y + tm+ (1− t)m′))
≥ exp (−tψc(x+m)− tψc(−x+m)− (1− t)ψc(y +m′)− (1− t)ψc(−y +m′))

× exp (ct(1− t)|m−m′ + x− y|p + ct(1− t)|m−m′ + y − x|p)
≥ exp (−t(ψc(x+m) + ψc(−x+m))− (1− t)(ψc(y +m′) + ψc(−y +m′)) + 2ct(1− t)|m−m′|p)

= exp (−ψc(x+m)− ψc(−x+m) + c(1− t)|m−m′|p)t

× exp (−ψc(y +m′)− ψc(−y +m′) + ct|m−m′|p)1−t
(2.13)

Applying the Prékopa-Leindler inequality with

h(x) = h(x, tm+ (1− t)m′),

f(x) = exp (−ψc(x+m)− ψc(−x+m) + c(1− t)|m−m′|p)
and

g(x) = exp (−ψc(y +m′)− ψc(−y +m′) + ct|m−m′|p)
then yields∫

R
exp (−ψc(x+ tm+ (1− t)m′)− ψc(−x+ tm+ (1− t)m′)) dx

≥
(∫

R
exp (−ψc(x+m)− ψc(−x+m) + c(1− t)|m−m′|p) dx

)t
×
(∫

R
exp (−ψc(x+m′)− ψc(−x+m′) + ct|m−m′|p) dx

)1−t

(2.14)

so that
ψ̄c(tm+ (1− t)m′) ≤ tψ̄c(m) + (1− t)ψ̄c(m′)− ct(1− t)|m−m′|p,

which is the inequality we were aiming for.
The same arguments, applied with p = 2 also show that ψ̄c inherits uniform convexity from
ψc.
We still need to prove bounds on δ̄ψ and its first derivative. These were already proven
in [12], we reproduce their argument here.
It will be convenient to introduce the probability measures

ν(dx) =
1

Z
exp(−ψ(−x+m)− ψ(x+m))dx

and

νc(dx) =
1

Z
exp(−ψc(−x+m)− ψc(x+m))dx,

so that we have

δ̄ψ = −1

2
log

∫
exp(−δψ(−x+m)− δψ(x+m))νc(dx)

and the bound ||δ̄ψ||∞ <∞ immediately follows from ||δψ||∞ <∞.
A direct calculation yields

2δ̄ψ
′
(m) =

∫
(ψ′(−x+m) + ψ′(x+m))ν(dx)−

∫
(ψ′c(−x+m) + ψ′c(x+m))νc(dx).
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We introduce the family of measures (νs)s∈[0,1], defined by

νs(dx) :=
1

Z
exp(−ψc(−x+m)− ψc(x+m)− sδψ(−x+m)− sδψ(x+m))dx.

This family interpolates between ν0 = νc and ν1 = ν. By the mean-value theorem, there
exists s ∈ [0, 1] such that

2δ̄ψ
′
(m) =

d

ds

∫
(ψ′c(−x+m) + ψ′c(x+m) + sδψ′(−x+m) + sδψ′(x+m))νs(dx)

=

∫
(δψ(−x+m) + δψ(x+m))νs(dx)

− covνs (ψ′c(−x+m) + ψ′c(x+m), δψ(−x+m) + δψ(x+m))

− covνs (sδψ′(−x+m) + sδψ′(x+m), δψ(−x+m) + δψ(x+m))

The first and third term on the right-hand side of this equation can be bounded uniformly
in m by using the assumption that δψ and δψ′ are bounded. For the second term, we also
use these bounds, as well as the asymmetric Brascamp-Lieb inequality of Lemma 2.6 to show
that

covνs (ψ′c(−x+m) + ψ′c(x+m), δψ(−x+m) + δψ(x+m))

≤ Csup
x

∣∣∣∣ψ′′c (−x+m)− ψ′′c (x+m)

ψ′′c (−x+m) + ψ′′c (x+m)

∣∣∣∣ ∫ | − δψ′(−x+m) + δψ′(x+m)|νs(dx)

≤ C,

which finishes the proof of ||δ̄ψ′||∞ <∞. This concludes the proof of Lemma 2.2.
�

Finally, we prove Lemma 2.3, which is the last remaining step.

Proof of Lemma 2.3. We define

ϕ(m) := sup
σ∈R

(
σm− log

∫
R

exp(σx− ψ(x))dx

)
. (2.15)

It is the Legendre transform of the function

ϕ∗(σ) := log

∫
exp(σx− ψ(x))dx. (2.16)

µσ(dx) = exp(σx− ψ(x)− ϕ∗(σ))dx (2.17)

Theorem 2.9 (Local Cramér theorem, Menz-Otto 2011). Let

ψK(m) := − 1

K
log

(∫
XK,m

exp(−
∑

ψ(x))dx

)
.

If ψ is a bounded pertubation of a uniformly convex potential, we have

|ψ′′K(m)− ϕ′′(m)| ≤ C

K
ϕ′′(m)

uniformly in m ∈ R.
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Since the proof of this result is quite long, we will not reproduce it here, and refer the
interested reader to [12].

We apply this theorem, and since RMψ = ψ2M , for M large enough we have, uniformly in m,

RMψ′′(m) ≥ 1

2
ϕ′′(m).

Direct calculation on expression (2.15)

ϕ′′(m) =
1

s(σm)2
,

where

s(σ)2 =

∫
(x−m)2µσ(dx),

µσ(dx) :=
1

Z
exp(σx− ψ(x))dx,

and σ is the unique real number such that
∫
xµσ(dx) = m.

The measures µσ satisfy a Poincaré inequality with constant independent of σ, therefore we
can show that s(σ)2 is bounded above independently of σ :

s(σ)2 ≤ 1

ρ

∫
|∇x|2µσ(dx) =

1

ρ
,

and the uniform convexity of RMψ′′ follows.
To show that RMψ is p-convex, it is therefore enough to show that

ϕ′′(m) ≥ C|m−m0|p−2 (2.18)

for some C > 0 and m0 ∈ R. Let

m0 :=

∫
xµ0(dx).

Since, by the usual properties of the Legendre transform, the real number σm such that
ϕ(m) = mσm − ϕ∗(σm) is given by ϕ′(m) = σm, we have ϕ′(m0) = 0, and the unique
minimum of ϕ is reached at m0. Since µ0 satisfies p-LSI(ρ) for some ρ > 0 (to show this, use
the p-convexity of ψc and the Holley-Stroock lemma), applying Proposition A.5, we have

1∫
exp(−ψ(x))dx

∫
exp(σx− ψ(x))dx ≤ exp

(
σ

∫
xµ0(dx) +

|σ|q

ρ(q − 1)

)
and therefore

ϕ∗(σ) ≤ ϕ∗(0) + σm0 +
|σ|q

ρ(q − 1)
.

We then have

ϕ(m) = sup
σ∈R

(σm− ϕ∗(σ))

≥ sup
σ∈R

(
σm− ϕ∗(0)− σm0 −

|σ|q

ρ(q − 1)

)
= ϕ(m0) + sup

σ∈R

(
σ(m−m0)− |σ|q

ρ(q − 1)

)
= ϕ(m0) + c|m−m0|p (2.19)
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where c is a positive constant which only depends on ρ and p. We then consider f(m) =
(m −m0)ϕ′(m) − ϕ(m). Since ϕ′′ is positive, f reaches its minimum at m0, so that for all
m ∈ R we have (m −m0)ϕ′(m) − ϕ(m) ≥ −ϕ(m0), and therefore, using (2.19) and the fact
that ϕ′ is increasing, we get

|ϕ′(m)| ≥ c|m−m0|p−1. (2.20)

To study the behavior of ϕ′′, we shall now look at ϕ(3). An explicit calculation shows that

ϕ(3)(m) =
d

dm

(∫
(x−m)2µσ(dx)

)−1

=
dσ

dm
× d

dσ

(∫
(x−m)2µσ(dx)

)−1

= −
(∫

(x−m)3µσ(dx)

)(∫
(x−m)2µσ(dx)

)−3

(2.21)

so that ϕ(3)(m) = 0 iff
∫

(x−m)3µσ(dx) = 0. But we have

d

dσ

∫
(x−m)3µσ(dx) =

∫
(x−m)4µσ(dx) > 0

so that
∫

(x−m)3µσ(dx) is a strictly increasing function, and cancels for at most one value

of m. Therefore there exists some m1 ∈ R such that ϕ(3) has constant sign on (m1,+∞).
Without loss of generality, we can assume m1 > m0. We consider two cases :
If ϕ(3) is non-negative on (m1,+∞), then for any α ∈ [0, 1] the function (m −m0)ϕ′′(m) −
αϕ′(m) is increasing on (m1,+∞). Moreover, since m1 > m0, ϕ′(m1) > 0, and if we take

α = min(1, (m1−m0)ϕ′′(m1)
ϕ′(m1) ), this function is nonnegative at m = m1. Therefore, for any

m ∈ (m1,+∞), we have

ϕ′′(m) ≥ α ϕ′(m)

m−m0

≥ c|m−m0|p−2. (2.22)

If ϕ(3) is negative on (m1,+∞), then ϕ′′ is decreasing, and since it is bounded below by a
positive constant, it converges to some positive constant λ > 0 in +∞. We then have

ϕ′(m) =

∫ m

m0

ϕ′′(s)dx ∼
m→+∞

λm.

But since we know that ϕ′(m) ≥ c|m −m0|p−1 with p > 2, this is a contradiction, so ϕ(3)

must be non-negative on (m1,+∞). Therefore we have

ϕ′′(m) ≥ c|m−m0|p−2

for all m > m1. With the same reasoning, we can show that ϕ′′(m) ≥ c|m −m0|p−2 for all
m < m2 for some m2 < m0. But since ϕ′′ is bounded below by a strictly positive constant,
if we take c small enough, we also have ϕ′′(m) ≥ c|m − m0|p−2 for all m ∈ [m2,m1], and
therefore (2.18) holds. This concludes the proof of Lemma 2.3.

�
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3. An application to Kawasaki dynamics

There are many results on convergence to equilibrium in relative entropy for various dynamics
in the literature. Theorem 1.7 says that, when we have such a convergence and if the invariant
measure is the canonical ensemble µN,m, then we also have convergence in the Wasserstein
distance Wp. An example of such a dynamic with conservation law is given by the Kawasaki
dynamic on RN :

dXt = −A∇H(Xt)dt+
√

2AdBt

where Bt is a Brownian motion on RN and A is the discrete Laplacian on RN , that is

Ai,j := 2δi,j − δi,j+1 − δi,j−1.

If we assume that the law of the initial value X0 is absolutely continuous with respect to
µ = exp(−H)dx, then the law ft of Xt satisfies (in a weak sense) the PDE

∂ft
∂t

= ∇ · (A∇ftµ).

Since this dynamic conserves the average
∑
xi, we restrict it to the hyperplane {

∑
xi = Nm}.

It is a consequence of the LSI proved in [12] that, when H(x) =
∑
ψ(xi) with ψ a bounded

perturbation of a uniformly convex potential, the entropy satisfies the bound

Entµ(ft) ≤ exp(−ρt/N2) Entµ(f0),

and the order of magnitude t/N2 is optimal. The following result is then an immediate
consequence of this bound and our results :

Proposition 3.1. Assume that ft is the law of a solution of the Kawasaki dynamics with
initial condition f0µ. Assume that the single-site potential satisfies (1.4). Then we have
convergence to equilibrium for Wp, in the following sense :

W p
p (ftµ, µ) ≤ C exp(−ρt/N2) Entµ(f0),

with constants C and ρ independent of the dimension N and the mean spin m, and the `p

distance.

Appendix

Appendix A. Standard criteria for modified LSI

In this section, we state some standard criteria for a measure to satisfy a modified LSI. These
criteria are respectively the natural equivalents of the Bakry-Emery theorem, the tensorization
principle and the Holley-Stroock lemma for classical the LSI.

Theorem A.1. Let V be a uniformly p-convex function with constant ρ on RN , that is for
any x, y ∈ RN and t ∈ [0, 1], we have

V (tx+ (1− t)y) ≤ tV (x) + (1− t)V (y)− ρt(1− t)
p
||x− y||pp.

Then the probability measure µ(dx) = 1
Z exp(−V (x))dx satisfies p− LSI((ρ/q)q−1).

For a proof of this result, we refer to [2].
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Example A.1. µ(dx) = exp(−||x||pp)dx satisfies p-LSI(c) for some c > 0.

Proposition A.2. If V : R → R satisfies V ′′(x) ≥ c(p − 1)|x|p−2, then V is p-convex with
constant c.

Remark. This is not a necessary condition. x → (x − 1)4 is 4-convex with constant 4, yet
we do not have 12(x− 1)2 ≥ 12x2.

Proposition A.3. If µ (resp. ν) is a probability measure on X1 (resp. X2) satisfying
p− LSI(ρ1) (resp. p− LSI(ρ2)), then µ⊗ ν satisfies p− LSI(min(ρ1, ρ2)).

Proof. It is proven in the same way as for the usual LSI, by using the inequality

Entµ⊗ν(fq) ≤
∫
X2

Entµ(f(·, x2)q)ν(dx2) +

∫
X1

Entν(f(x1, ·)q)µ(dx1)

and applying the p-LSI for each measure. See for example [9], Proposition 5.6 for a proof of
this inequality. �

Proposition A.4. If µ satisfies p−LSI(ρ) and ψ is a bounded function, then the probability
measure ν = 1

Z exp(ψ)dµ satisfies p− LSI(e2 osc(ψ)ρ), where osc(ψ) = supψ − inf ψ.

Proof. This is the analogue of the Holley-Stroock lemma for the usual LSI, and we can prove
it in the same way. The identity (valid for any probability measure µ)

Entµ(f) = inf
t≥0

∫
X

f log f − t log t+ (t− f)(1 + log t)dµ

implies that

Entν(fq) ≥ exp(osc(ψ)) Entµ(fq).

It is also easy to show that∫
||∇f ||qqdµ ≤ exp(osc(ψ))

∫
||∇f ||qqdν,

so that, if µ satisfies p-LSI(ρ), then ν satisfies p-LSI(e2 osc(ψ)ρ). �

Proposition A.5. If a probability measure µ on Rn (endowed with the Lp norm) satisfies
p−LSI(ρ), then for any 1-Lipschitz function f such that

∫
fdµ = 0, we have

∫
eλfdµ ≤

exp
(

λq

ρ(q−1)

)
for all λ ≥ 0.

Proof. Let f be a smooth 1-Lipschitz function on X for the || · ||p norm, with mean 0, and

H(λ) :=

∫
exp(λf − cλq||f ||qlip)dµ.

Then

d

dλ
H(λ) =

∫
(f − qcλq−1||f ||qlip) exp(λf − cλq||f ||qlip)dµ

=
1

λ

∫
(λf − cqλq||f ||qlip) exp(λf − cλq||f ||qlip)dµ

=
1

λ

∫
(λf − cλq||f ||qlip) exp(λf − cλq||f ||qlip)dµ+

c(1− q)
λ

λq||f ||qlipH(λ)

=
1

λ
Entµ(exp(f − cλq||f ||qlip)) +

c(1− q)
λ

λq||f ||qlipH(λ)
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We can use the assumption that µ satisfies the p-LSI with parameter ρ under the form (1.2)
to bound the entropy term, and we obtain

d

dλ
H(λ) ≤ 1

λρ

∫
λq||∇f ||qq exp(f − cλq||f ||qlip)dµ+

c(1− q)
λ

λq||f ||qlipH(λ). (A.1)

Since we assumed f to be 1-Lipschitz for the Lp norm, ||∇f ||q ≤ ||f ||lip almost everywhere,
and therefore

d

dλ
H(λ) ≤ 1

λρ

∫
λq||f ||qlip exp(λf − cλq||f ||qlip)dµ+

c(1− q)
λ

λq||f ||qlipH(λ)

=

(
1

ρ
+ c(1− q)

)
λq−1||f ||qlipH(λ).

Taking c = 1/ρ(q − 1), we get d
dλH(λ) ≤ 0, therefore H(λ) ≤ H(0) = 1 for all λ ≥ 0, so that

∫
exp(λf)dµ ≤ exp

(
λq||f ||qlip
ρ(q − 1)

)

for all λ ≥ 0, which implies the desired result.
�
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